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The bistable Swift-Hohenberg equation possesses a variety of time-independent spatially localized solutions
organized in the so-called snakes-and-ladders structure. This structure is a consequence of a phenomenon
known as homoclinic snaking, and is in turn a consequence of spatial reversibility of the equation. We examine
here the consequences of breaking spatial reversibility on the snakes-and-ladders structure. We find that the
localized states now drift, and show that the snakes-and-ladders structure breaks up into a stack of isolas. We
explore the evolution of this new structure with increasing reversibility breaking and study the dynamics of the
system outside of the snaking region using a combination of numerical and analytical techniques.
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I. INTRODUCTION

The so-called 23 Swift-Hohenberg equation takes the
form

�tu = ru − �1 + �x
2�2u + b2u2 − u3 �1�

and admits multiple stationary spatially localized states on
the real line within the so-called snaking or pinning region
�1,2�. These are organized in a structure that has been called
the snakes-and-ladders structure, shown in Fig. 1. The snak-
ing or pinning region rP1�r�rP2 is defined by the
asymptotic location of the saddle-nodes high up the snaking
structure. The point r=rM corresponds to the Maxwell point
for this system, determined by the twin conditions F=H=0
�2,3�. At this point the energy F�up�x�� of the spatially peri-
odic state up�x� with wavelength �M is equal to the energy
F�0�=0 of the trivial state u=0, where

F�u�x�� = �
−�

�

dx�−
1

2
ru2 +
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2
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3
b2u3 +

1

4
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�2�

The wavelength ��r� of the localized states high up the snak-
ing structure is determined from the requirement that any
steady state asymptotic to u=0 as �x�→� must lie in the
hypersurface H=0 containing u=0, where
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3u −
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3
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4
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�3�

is the Hamiltonian conserved by the time-independent ver-
sion of Eq. �1� written as a dynamical system in space. These
two conditions together determine both r=rM and ��rM�
	�M.

The structure summarized in Fig. 1 may be thought of as
the result of broadening of the classical Maxwell point be-
tween a pair of homogeneous equilibria in a variational sys-
tem due to the pinning of the fronts bounding the localized
state to the periodic structure within �1,2,4,5�. Mathemati-
cally, it is a consequence of spatial reversibility, i.e., the in-
variance of Eq. �1� under

R:x → − x, u → u , �4�

as discussed in Refs. �5–8�. It is therefore of interest to ex-
amine the consequence of weak breaking of the symmetry
�4�. In this paper we examine the effect of adding a disper-
sive term to Eq. �1�, and study the equation

�tu = ru − �1 + �x
2�2u + ��x

3u + b2u2 − u3 �5�

for b2=2 and small values of the coefficient �.

II. NUMERICAL RESULTS

Steadily drifting localized states can be obtained as solu-
tions of the time-independent ordinary differential equation

ru − �1 + ��
2�2u + v��u + ���

3u + b2u2 − u3 = 0, �6�

subject to u→0 as ���→�. Here �	x−vt and the drift speed
v is computed as part of the solution, i.e., it is a �nonlinear�
eigenvalue.

The loss of reversibility symmetry destroys the pitchfork
bifurcations responsible for the rung states present near each
saddle-node, resulting in a stack of isolas as shown in Fig. 2.
The drift speed of the pattern at onset �r=0� is given by v
=�, and remains of order � for larger amplitudes �Fig. 3�.
Figure 4 shows that the isolas gradually shrink toward r
=rM as � increases, and disappear completely near �=0.4
�for b2=2�. Throughout this process the drift speed remains
O��� as shown in Fig. 5.

Different cuts through parameter space result in different
morphologies. With �=0.4+r the sign of the dispersive term
changes across the pinning region resulting in a pair of in-
tertwined snakes instead of a stack of isolas �Fig. 6�.
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III. DEPINNING

We now examine the dynamics outside of the pinning
region. When �=0 and r�rP2 the fronts bounding the local-

ized state unpin, and since the periodic state has lower en-
ergy than u=0 the fronts move apart allowing the periodic
state to invade the entire domain. The opposite occurs when
r�rP1 and the fronts move so as to eliminate the localized
structure. The growth/decay of the localized state takes place
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FIG. 1. �a� Homoclinic snaking in Eq. �1� when b2=2. Stable �unstable� states are indicated by thick �thin� lines. N is the L2 norm per
unit length. �b� Sample localized profiles u�x�. States �i�–�iv� are located at successive saddle-nodes on the L0 branch; �v�–�vi� lie on L�.
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FIG. 2. The breakup of the snakes-and-ladders structure into a
stack of isolas when �=0.05 �solid line�. The underlying snakes-
and-ladders structure ��=0� is shown for comparison �dashed line�.
Parameter: b2=2.
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FIG. 3. Drift speeds �normalized against �� along the three iso-
las shown in Fig. 2. The drift speed decreases with increasing width
�solid to dashed to dotted� of the localized state. Parameter: b2=2.
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via successive nucleation/destruction of structures at either
front region. When �=0 these processes take place sym-
metrically, maintaining the overall reflection symmetry of the
localized state as it grows or decays. Figures 7�a� and 7�b�
show that this is no longer the case when ��0: for small
		r−rP2 �long nucleation time� the localized state grows
only at the leading front while for larger 	 it grows at both
ends, albeit asymmetrically. However, at yet larger values of
� nucleation is again restricted to the leading front �Fig.
7�c��.

IV. ANALYSIS

The time to nucleate a new wavelength can be computed
by projecting the dynamics near the boundary of the pinning
region onto the neutral modes of the localized structure
present at r=rP1 or r=rP2 �2,9�. This procedure can be ex-
tended to the case ��0, as we now show.

We anticipate that when ��0 all patterns will drift; this
drift is a consequence of the excitation of the translation
mode U0� and takes place on the time scale �−1. We set r
=rP2+	, �	�
1, and write

u�x,t� = u0�x + ��T�� + �	�1/2u1�x + ��T�,�� + �	�u2�x + ��T�,��

+ ¯ , �7�

where ��T� is the spatial phase of the pattern, �= �	�1/2t and
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FIG. 6. Reconnection of the snakes-and-ladders structure when
�=0.4+r. Parameter: b2=2.

FIG. 7. �Color online� Space-time evolution of solutions of Eq.
�5�. �a� �=0.001 and r=rP2+0.000 15: the patterned region grows
at the leading front only. �b� �=0.001 and r=rP2+0.000 65: the
patterned region grows at both ends, but at different rates. �c� �
=0.01 and r=rP2+0.000 65: nucleation again occurs at the leading
front only. Parameter b2=2 throughout.
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FIG. 4. Isolas formed within a pair of rungs of the snakes-and-
ladders structure when �=0.05, 0.10, 0.20, and 0.35. The underly-
ing snakes-and-ladders structure is indicated by a short-dashed line.
As � increases the size of the isola decreases. Parameter: b2=2.
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FIG. 5. Drift speeds along the isolas in Fig. 4, as indicated by
the corresponding line type.
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T= �	�t. Finally, we take �=�	�, =O�1�, to include � in the
expansion at the correct order.

The leading order problem is given by

rP2u0 − �1 + �x
2�2u0 + b2u0

2 − u0
3 = 0, �8�

with solution u0=U0�x+��T��. In the following we pick the
solution at the fourth saddle-node on branch L0 �Fig. 8� for
all explicit computations.

At order O��	�1/2� we obtain

Lu1 = 0, �9�

where L	rP2− �1+�x
2�2+2b2U0−3U0

2 and is self-adjoint. At
a saddle-node high up the snaking branches L possesses two
null eigenfunctions, a symmetric mode ũ10 and the antisym-
metric translation mode ũ12	U0�. In addition, there is a third
nearly neutral antisymmetric mode, ũ11, responsible for the
branching of asymmetric states exponentially close to each
saddle-node �Fig. 1�. These eigenfunctions are also shown in
Fig. 8. Since the translation mode is already included in the
phase � we have

u1 = a���ũ10�x + ��T�� + b���ũ11�x + ��T�� , �10�

where a���, b��� and ��T� are to be determined.
At order O��	�� we obtain

U0��T + u1� = Lu2 + sgn�	�U0 + U0� + �b2 − 3U0�u1
2.

�11�

Solvability conditions for u2 follow on multiplying Eq. �11�
in turn by ũ10, ũ11, and U0�, and integrating over the real line.
For the profile in Fig. 8 the U0� solvability condition yields, to
leading order,

�T = − 0.9663 . �12�

Thus the drift speed, �t=−0.9663� in unscaled variables, in-
creases �at leading order� linearly with �. The resulting pre-
diction for �=0.001 agrees very well with the measured
speed 0.000 958 9. Measurements show that the drift speed
is almost independent of 	, i.e., at leading order the drift
speed is not related to the asymmetry of the pattern. On the
other hand in writing Eq. �12� we have dropped two terms
with O�10−5� coefficients. These terms involve the overlap of
ũ12	U0� and ũ11 but these peak at different locations and
their product is already small �Fig. 8�. As a result two very
small terms reflecting the effect of asymmetric nucleation of
new cells fore and aft on the drift speed has been omitted.

The remaining solvability conditions yield the coupled
equations

a� = �1 sgn�	� + �2a2 + �3b2, �13�

b� = − � + 2�4ab . �14�

The coefficients in this equation depend on the length 2L of
the localized state. High up the snaking structure, 2L is large
and the eigenfunctions ũ10, ũ11 consist, up to exponentially
small terms, of pairs of nonoverlapping neutral modes local-
ized at the bounding fronts �1,8�. Consequently we may write
ũ10=v�x+L�+v�x−L�, ũ11=v�x+L�−v�x−L� for a suitable
function v�x�, cf. Fig. 8. It follows that, up to exponentially
small terms, �2=�3=�4. This expectation is confirmed by a
computation of the required integrals using the numerically
generated profile U0 in Fig. 8, together with the correspond-
ing eigenfunctions. We obtain �1=0.8411, �2=�3=�4
=0.3904, and �=0.2980. These results are independent of
which saddle-node is selected for the numerical evaluation
provided the corresponding profile is sufficiently long that
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FIG. 8. Steady solution U0 at
the fourth saddle-node on the L0

branch �r=−0.331 015 64�. Lower
panels show the three neutral
eigenfunctions.
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the instabilities at the front and back of the structure interact
only exponentially weakly.

We now take linear combinations of the above equations,

�a � b�� = �1 sgn�	� � � + �2�a � b�2, �15�

and define the nucleation time at the leading front as the time
�1�

Tleading 	 �
−�

� d�

a − b
=

�

�2
1/2��1	 + ���1/2 . �16�

This time diverges �i.e., nucleation ceases� when 	c
leading=

−�� /�1=−0.3543�. The nucleation time at the trailing front
is computed similarly, using a+b instead of a−b �see Fig. 8�,
and yields 	c

trailing=0.3543�. Thus the distance between the
saddle-node of the drifting localized state and the boundary
of the pinning region, �rSN−rP2�, is predicted to be
0.000 354 3 when �=0.001, a result consistent with the
value 0.000 356 obtained by numerical continuation. More-
over, the predicted leading and trailing nucleation times
away from the saddle-node are also in excellent agreement
with the results of direct numerical simulation �Fig. 9�.

Observe that when =0 �no dispersion�, the amplitude
b=0 and Eqs. �13� and �14� reduce to those in �1�. Thus the
asymmetry in the nucleation process is the result of excita-
tion of the antisymmetric mode ũ11 whenever �0, and not
of the translation mode.

V. DISCUSSION AND CONCLUSIONS

We have described the effects of weak breaking of the
reversibility required for the presence of a snaking or pinning
region in bistable systems with competing homogeneous and
spatially periodic steady states, and the associated snakes-
and-ladders structure. We have shown that for weak disper-
sion this structure breaks up into a stack of isolas of slowly
drifting localized states and that these isolas shrink and even-
tually vanish as dispersion increases. Stacks of isolas are
characteristic of multipulse homoclinic orbits as well �10,11�.
We have also examined the effects of dispersion on the mo-
tion of fronts just outside the pinning region, and showed by
means of numerical simulations and analysis that for small

dispersion nucleation occurs at the leading front but with
increasing distance from the upper boundary of the pinning
region two-sided nucleation takes over. Our analytical pre-
diction of this transition matches almost perfectly the nu-
merical results. Analogous results are obtained near the
lower boundary of the pinning region, although here the lo-
calized structure is gradually eroded as the domain fills with
the trivial state.

As shown in Fig. 7�c� increasing the dispersion for fixed
distance from the pinning region arrests the growth at the
trailing front and restores one-sided nucleation. This transi-
tion is a manifestation of the transition from nonlinear abso-
lute instability to nonlinear convective instability �12� and so
is distinct from the transition studied in this paper.
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FIG. 9. Predicted leading �left curve� and trailing �right curve�
nucleation times as a function of 		r−rP2 when �=0.001. When
	=0.000 15 growth takes place at the leading front only �Fig. 7�a��;
when 	=0.000 65 it takes place at both front and back �Fig. 7�b��.
The analytical predictions �continuous lines� are in excellent agree-
ment with direct numerical simulation �superposed data points�.
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